
Bisoños Usuarios de GNU/Linux de Mallorca y Alrededores | Bergantells Usuaris de GNU/Linux de Mallorca i
Afegitons

Ext2, ReiserFS and XFS Benchmarks (136644 lectures)
 Per Ricardo Galli Granada, gallir (http://mnm.uib.es/gallir/)
Creado el 22/05/2001 04:46 modificado el 22/05/2001 04:46

First of all, there is no a clear winner, XFS is better in some aspects or cases, ReiserFS in others, and
both are better than Ext2 in the sense that they are comparable in performance (again, sometimes
faster, sometimes slightly slower) but they a journaling file systems, and you already know what are
their advantages... And perhaps the most important moral, is that Linux buffer/cache is really
impressive and affected, positively, all the figures of my compilations, copies and random reads and
writes. So, I would say, buy memory and go journaled ASAP...

After our site was Slashdotted(1) when Beowulf(2) reported some very simple tests among ReiserFS,
XFS, JFS and Ext2, we received comments from Hans Reiser, his collaborators and other readers in
Internet. The major criticism was that the report was in Spanish, so here you have new ones in
English (rapidly written, without running any spelling or grammar checker, we've got bored after
many mkfs...mount...time time time umount... ;-).

Mongo Benchmarks(3)

The original author of the previous test, Guillem Cantallops, carried up new benchmarks (XFS vs. ReiserFS vs. JFS vs.
Ext2(3)) but this time using the Mongo script provided by Hans Reiser. The first benchmark was done on a slow CPU
machine (Cyrix MII 233MHz, 128MB SDRAM, Samsung SV0844A hard disk) and we noted that, although ReiserFS
was the fastest for reading small size files (up to 100 or 1000 bytes), it was extremely slow for bigger ones (the files'
average size of a vanilla Red Hat or Debian distribution is about 16 KB).

We weren't very convinced of the validity of the benchmark results due to the old CPU, so Guillem repeated the
benchmarks (XFS, ReiserFS, Ext2(3)) on a Pentium III, 800 Mhz, 512MB SDRAM and a Seagate ST330621A hard
disk. Although the results are relatively comparables to the previous benchmark, they are much closer to each other in
the second test.

Linux Kernel Compilation

I also wanted to test the three file systems but compiling the kernel. I run three times the test, which consisted of a cp,
make bzImage, make clean and rm -r.

According to some comments from Hans Reiser that the use of tails for storing data belonging to other files can lower
the performance (they have implemented a new layout policy called Plan A that missed the 2.4 code freeze and will be
in Reiser4), we tested with the default mount option (using tails) and with mount -o notail.

The average of the three execution are as follows:

Command

Kernel Compilation
(time in seconds)

XFS ReiserFS
(notail) ReiserFS Ext2

CPU Real CPU Real CPU Real CPU Real
cp -a /usr/linux /mnt/ 8.57 29.40 4.81 5.99 5.49 6.45 2.55 17.90

BULMA: Ext2, ReiserFS and XFS Benchmarks

1/4

http://bulma.net/
mailto:gallir _ARROBA_ uib.es?subject=Articulo%20%27Ext2%2C%20ReiserFS%20and%20XFS%20Benchmarks%27%20en%20Bulma
http://mnm.uib.es/gallir/
http://slashdot.org/article.pl?sid=01/05/10/1747213
http://bulma.net/avanzada.phtml?btnBuscar=Buscar&chkAutor=on&strTexto=Beowulf
http://bulma.net/body.phtml?nIdNoticia=648
http://bulma.net/body.phtml?nIdNoticia=648
http://bulma.net/body.phtml?nIdNoticia=648
http://bulma.net/body.phtml?nIdNoticia=648

make bzImage 289.24 292.067 289.33 291.14 289.38 297.27 288.99 293.69
make clean 1.00 1.37 0.50 0.50 0.50 0.50 0.44 0.46
rm -rf /mnt/linux 2.14 11.41 1.06 1.07 1.05 1.05 0.19 0.19

 The test was done on the same machine: Pentium III, 800 Mhz, 512MB SDRAM and a Seagate ST330621A. For every
run, the partition (7GB) was cleaned (rm -rf *), unmounted and mounted again. Because the availability of the data in
the Linux cache may affect the time measured for cp -a, I repeated the command a couple of times before doing the real
measurements (there was a huge variance with the first time).

Random lseeks, reads and writes

The previous tests have shown me that the three file systems, besides the very slow copy in XFS, are very close in
terms of wall-clock and CPU times. But I wanted to try also what would happen in a "small database real case", so to
speak. The difference of the access pattern of a database is that most RDMS do a lot of lseek and read on files of
different size (table data and indices) and sporadically the write new values into the DB pages. Sometimes, a fsync
follows immediately after a write and the files may increase their size very slowly when new data is inserted.

So, I've created five files of different sizes: 1, 10, 100, 250 and 500 MBytes (I could try with bigger sizes, but the
benchmarks would take hours to complete...):

#! /bin/sh
for i in 1 10 100 250 500
do
 echo $i
 dd if=/dev/zero of=/mnt/$i.dat bs=1M count=$i
 chmod ugo+rw /mnt/$i.dat
done

Then I run a small program random.c (find it at the end of the page) that cycled (100 times) through the five files, and
for each cycle, it accessed 100 times to random (lseek) locations of the file, read a buffer of 16KB and then in the 25%
of the cases, it lseek'ed back to the previous position, wrote the buffer and the forced a fsync of the file.

To obtain the times, I first mounted the file system, created the files with the previous script and run three times the
program before to get the cache populated as fair as possible. Then I run the random program three times and took the
average of the three executions:

Read/Write/Fsync Tests in
seconds

(random.c)

XFS ReiserFS
(notail) Ext2

CPU 1.30 1.55 1.16
Real 62.50 66.91 65.32

Conclusions

I noted disparate results among the different base file size Mongo benchmarks(4), so I wanted to see what would happen
in a real scenario (at least for us) where the Linux VFS and cache techniques can improve enormously the global
performance of the system.

In the case of the kernel compilation, Ext2 has a very low performance for copying files, for the other tests ReiserFS
with notail option is the winner but the times are very close to Ext2 and XFS, the difference is less than 2% for make
bzImage.

In the last case, where I mixed lseek, read, write and fsync on files of different sizes, the winner is XFS but for a very
small difference, less that 8% compared to ReiserFS.

BULMA: Ext2, ReiserFS and XFS Benchmarks

2/4

http://bulma.net/static/mongo/

Analysing all benchmarks, it seems that for the common cases, ReiserFS and XFS have a better performance that Ext2
and with the added value of a journaled file system.

What can I say? If you are a home user or own a small server and a relatively fast CPU, use ReiserFS or XFS, both
were very stable in our tests and the differences are almost inexistent.

--ricardo

random.c

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
#define NFILES 5
#define NCYCLES 100
#define NTRIES 100
#define BSIZE 16536
char *filenames[NFILES] = {"1.dat", "10.dat", "100.dat", "250.dat", "500.dat" };
char *dir = "/mnt/";

main()
{
 char buffer[BSIZE];
 int cycle, try, fd, i, fsize, bytes;
 char filename[256];
 struct stat st;
 srand(time(NULL));
 for(cycle=0;cycle<NCYCLES;cycle++) {
 sprintf(filename, "%s%s", dir, filenames[rand() % NFILES]);
 if((fd=open(filename, O_RDWR)) < 0) {
 fprintf(stderr, "Couldn't open file %s, stop\n", filename);
 exit(0);
 }
 fstat(fd, &st);
 fsize=st.st_size;
 printf("Trying %s, size: %d\n", filename, fsize);
 for(try=0; try<NTRIES; try++) {
 i = rand() % fsize;
 seek(fd, i, SEEK_SET);
 bytes = read(fd, buffer, BSIZE);
 // printf("read %d bytes\n", bytes);
 if (rand() % 4 == 0) {
 lseek(fd, i, SEEK_SET);
 bytes = write(fd, buffer, BSIZE);
 fsync(fd);
 if (bytes < 0) {
 fprintf(stderr, "Error %s\n", strerror(errno));
 }
 }
 }
 }
}

Lista de enlaces de este artículo:

http://slashdot.org/article.pl?sid=01/05/10/17472131.
http://bulma.net/avanzada.phtml?btnBuscar=Buscar&chkAutor=on&strTexto=Beowulf2.

BULMA: Ext2, ReiserFS and XFS Benchmarks

3/4

http://slashdot.org/article.pl?sid=01/05/10/1747213
http://bulma.net/avanzada.phtml?btnBuscar=Buscar&chkAutor=on&strTexto=Beowulf

http://bulma.net/body.phtml?nIdNoticia=6483.
http://bulma.net/static/mongo/4.

E-mail del autor: gallir _ARROBA_ uib.es
Podrás encontrar este artículo e información adicional en: http://bulma.net/body.phtml?nIdNoticia=642

BULMA: Ext2, ReiserFS and XFS Benchmarks

4/4

http://bulma.net/body.phtml?nIdNoticia=648
http://bulma.net/static/mongo/
http://bulma.net/body.phtml?nIdNoticia=642

	BULMA: Ext2, ReiserFS and XFS Benchmarks

